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Introduction

• Gain scheduled linear controllers for nonlinear systems

• Classical/neural synthesis of control systems
Prior knowledge
Adaptive control and artificial neural networks

• Adaptive critics
Learn in real time
Cope with noise
Cope with many variables
Plan over time in a complex way
...

Action network takes immediate control action

Critic network estimates projected cost



Motivation for Neural Network-Based Controller

• Network of networks motivated by linear control structure

• Multiphase learning:

Pre-training

On-line training during piloted simulations or testing

• Improved global control

• Pre-training phase provides:

A global neural network controller 

An excellent initialization point for on-line learning

• On-line training accounts for:

Differences between actual and assumed dynamic models

Nonlinear effects not captured in linearizations



Nonlinear Business Jet Aircraft Model

Aircraft Equations of Motion:
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State vector:

Control vector:
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Bolza Type Cost Function Minimization:
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Value Function Minimization

The minimization of J can be imbedded in the following problem:
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Value Function for [t, tf]:
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Discretized Optimization Problem

Approximate the equations of motion by a difference equation:
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Similarly, the cost function:
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The cost of operation during the last stage is:
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The Principle of Optimality

Similarly, the optimal cost over the last two intervals is given by:
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The optimal cost, from         to      , is then:
1−fkt fkt

By the principle of optimality,

a

b

cGiven Vab,

if Vabc is optimal from a to c,

then Vbc is optimal from b to c: V*
abc = Vab + V*

bc



A Recurrence Relationship of Dynamic Programming

Then, for a k-stage process:

( )[ ] ( ) ( ) ( ) ( )[ ] ( ) ( )[ ]

( ) ( ) ( )[ ]{ }ff
f

f

f
fff

ff

knkffDnk

k

nkk
Dffknknkfknk

Vnknk

kkkknkV

,1
*

1

1,,1,
,

*

,min

,,min

+−
−

−

−=−+−−
−

+−−=








+≡− ∑
ux

uxxx

u

uuu

L

Lφ
K

Backward Dynamic Programming

So, the optimal cost for a 2-stage process can be re-written as:
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• Begin at tf

• Move backward to t0

• Store all u and V

• Off-line process

a b'



Forward Dynamic Programming

• Estimate cost-to-go function,

• Determine immediate control action

• Move forward in time, updating 
cost-to-go function

• On-line process
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Cost associated with going from tk to tf:
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Hereon, let t = tk, t + 1 = tk+1, etc...



Adaptive Critic Designs .. at a Glance!

Legend:
'H': Heuristic
'DP': Dynamic Programming
'D': Dual
'P': Programming
'G': Global
'AD': Action Dependent
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Proportional-Integral Controller

Closed-loop stability: ( ) ,ct xx → ( ) 0~ →ty( ) ,ct uu →

yc = desired output,  (xc,uc) = set point.
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Assuming small perturbations, expand about nominal solution:
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The state variable is augmented to include the output error integral, ξξξξ(t),
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and the Proportional-Integral cost function is defined as:
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Linearized Business Jet Aircraft Model



where P is a Riccati matrix.

Furthermore,

From the Euler-Lagrange equations, the optimal* control law is:

Linear Proportional-Integral Control Law Formulation
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Where: ( ) ,ct xx → ( ) ,0~ →ty( ) ,ct uu → ( ) cs t yy →

Proportional-Integral Neural Network Controller
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Feedback and Command-Integral (Action)
Neural Network Pre-Training

Feedback Requirements (pre-training phase):

(R1)

(R2)
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a z output and inputs:
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Command-Integral Requirements (pre-training phase):

NNI provides dynamic compensation, ∆uI = NNI(∆ξξξξ, a).
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Critic Neural Network Pre-Training

Critic Requirements (pre-training phase):

NNC estimates the value function derivatives, λ λ λ λ = NNC(∆xa, a).

For each operating point, k,

a z output and training inputs:
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From the Proportional-Integral optimal value function derivatives:
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Action and Critic Neural Network On-line Training by 
Dual Heuristic Programming

The cost-to-go at time t,

The same cost function is optimized in pre-training and in on-line learning
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Optimality Conditions for Dual Heuristic Programming
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Differentiating both sides of the value function, V[∆xa(t)], w.r.t. ∆xa(t):

Differentiating w.r.t. the control, ( ):~ tu∆

Optimality equation:
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Action Network On-line Training

Train action network, at time t, holding the critic parameters fixed

[Balakrishnan and Biega, 1996]
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Critic Network On-line Training

Train critic network, at time t, holding the action parameters fixed

[Balakrishnan and Biega, 1996]
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Summary

• Aircraft optimal control problem

• Linear multivariable control structure

• Corresponding nonlinear controller

• Adaptive critic architecture:

Action and critic networks

! Algebraic pre-training based on a-priori knowledge

! On-line training during simulations (severe conditions)



Conclusions and Future Work

• Nonlinear, adaptive, real-time controller:

Maintain stability and robustness throughout flight envelope

Improve aircraft control performance under extreme conditions

• Systematic approach for designing nonlinear control systems 
motivated by well-known linear control structures

• Innovative neural network training techniques

Future Work:

• Adaptive critic architecture implementation

• Testing: acrobatic maneuvers, severe operating conditions, 

coupling and nonlinear effects


